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Limitation on stabilizing plane waves via time-delay feedback

Ilan Harrington and Joshua E. S. Socolar
Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708

~Received 27 April 2001; published 15 October 2001!

Previous work has demonstrated the possibility of stabilizing plane wave solutions of one-dimensional
systems using a spatially local form of time-delayed feedback. We show that the natural extension of this
method to two-dimensional systems fails due to the presence of torsion-free unstable perturbations. Linear
stability analysis of the complex Ginzburg-Landau equation reveals that long wavelength, transverse wave
instabilities cannot be suppressed by the method of extended time-delay autosynchronization. The conclusion
follows from symmetry considerations and therefore applies to a wide class of models with simple plane wave
solutions.

DOI: 10.1103/PhysRevE.64.056206 PACS number~s!: 05.45.Gg, 47.27.Rc, 47.52.1j
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I. INTRODUCTION

It has been suggested by Ott, Grebogi, and Yorke@1# that
by applying small perturbations to a dynamical system, o
can convert a chaotic attractor to any of a large numbe
time periodic motions. One important element required
exploiting this idea is the ability to stabilize an intrinsical
unstable periodic orbit~UPO!. In systems that are either to
fast or too complex to permit the application of standa
control techniques, it is sometimes possible to achieve st
lization using time-delay feedback, which has the advant
of not requiring prior knowledge of anything but the perio
of the desired orbit.

The method of ‘‘time-delay autosynchronization
~TDAS! was first introduced by Pyragas@2#. It is based on
applying feedback proportional to the deviation of the c
rent state of the system from its state one period in the p
Socolar, Sukow, and Gauthier@3# have proposed an exten
sion of the scheme, referred to as ETDAS, which achieve
larger domain of control in parameter space by using a s
of states at integer multiples of the period in the past. T
sum takes the form of a geometric series that can be ge
ated experimentally using only a single time-delay elem
in a feedback loop. It is known that the ETDAS method c
be effective for stabilizing simple systems such as a dri
nonlinear pendulum@4#, and ETDAS has been demonstrat
experimentally in high frequency electronic oscillators@5#.

We are interested in the possibility of stabilizing spatia
extended systems. Bleich and Socolar@6# showed that ET-
DAS can be used to enlarge the domain of stability of pla
waves in the one-dimensional complex Ginzburg-Land
equation~CGLE!. The method studied involved the additio
of a spatially local feedback term to the CGLE. Here w
address the question of whether those results can be exte
to higher-dimensional systems.

We find that in two or more dimensions the unstable pla
wave solutions of the CGLE cannot be stabilized by spatia
local ETDAS. The reason is that there exist unstable per
bations of the plane waves that have purely real Floquet m
tipliers ~no torsion!. A theorem first proven by Nakajima@7#
precludes the control of such orbits using straight-forw
time-delay control. Adding higher-order terms in the CGL
1063-651X/2001/64~5!/056206~6!/$20.00 64 0562
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does not alter this conclusion, so long as the new terms
not destroy the relevant symmetries of the system.

In Sec. II we present a proof that ETDAS cannot stabil
certain torsion-free orbits. Section III contains the analysis
the CGLE, emphasizing the existence of torsion-free ins
bilities. In Sec. IV we discuss the symmetries responsible
the presence of torsion-free modes in the CGLE and sh
that spatially local ETDAS still fails in the presence
higher-order terms.

II. LIMITS OF ETDAS

In this section we review the result of Nakajima and Ue
showing that ETDAS cannot stabilize certain torsion-free
bits @7,8#. We present their argument~in a slightly modified
form! for completeness and to make clear the application
the CGLE problem discussed in Secs. III and IV.

Let a dynamical variableB be a complex vector quantity
with dynamics governed by the equation

] tB~ t !5F„B~ t !…, ~1!

whereF is a given, smooth function. LetB0(t) be a solution
of Eq. ~1! that is periodic with periodt:

B0~ t1t!5B0~ t !. ~2!

The ETDAS method for stabilizing the UPO consists of t
addition of a control term based on the difference betwe
system states separated in time by one periodt. The equation
governing the controlled system is

] tB~ t !5F„B~ t !…1g(
l 50

`

Rlul~ t;t!, ~3!

where

ul~ t;t!5M̂ ~ t !@B~ t2 l t!2B~ t2 l t2t!#. ~4!

Here gPRe is the gain,RP(21,1) is a parameter that de
termines the relative importance of past differences, a
M̂ (t) is a matrix that specifies the linear transformation
lating the feedback signal~s! to the measured components
©2001 The American Physical Society06-1
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B. Note that for anyR, when the system is on the desire
UPO, we haveul50 for all l and the control signal vanishe

To determine the stability ofB0(t), let y(t)5B(t)
2B0(t), linearize Eq.~3!, and reorganize the sum to obta

ẏ~ t !5 Ĵ~ t !y~ t !1gM̂ ~ t !Fy~ t !1~R21!(
l 51

`

Rl 21y~ t2 l t!G ,

~5!

whereĴ(t) is the Jacobian ofF̂ evaluated on the UPO:

Ji j ~ t !5
]Fi~B!

]Bj
U

B5B0~ t !

. ~6!

Note that the uncontrolled system is described by Eq.~5!

with g50. SinceĴ(t) is evaluated on the periodic orbit an
is therefore periodic with periodt, andg is a real constant
standard Floquet theory allows us to write

y~ t !5(
n

esntpn~ t !, ~7!

with eachpn(t) a strictly periodic function with periodt :

pn~ t1t!5pn~ t !. ~8!

The stability ofB0 is determined by the values ofsn .
To determinesn , consider a single modepn(t). Dropping

the subscriptn, let

v~ t !5estp~ t !. ~9!

Define a time evolution operatorÛ(t;g) such that

v~ t !5Û~ t;g!v~0!. ~10!

Substitutingv(t) into Eq. ~5!, we find

v̇~ t !5F Ĵ~ t !1g
12e2st

12Re2st M̂ ~ t !Gv~ t !. ~11!

Substituting Eq.~10! into Eq. ~11! and formally integrating,
we can writeÛ(t;g) in the following way:

Û~ t;g!5T̂FexpE
0

t

duS Ĵ~u!1g
12z

12Rz
M̂ ~u! D G Î , ~12!

with T̂ as the time-ordering product operator,Î the identity,
andz the inverse Floquet multiplier defined asz[e2st. Note
that the denominator 12Rz is well behaved for anyR
P(21,1) whenzÞ1/R. Thus for uRu ,1 and anyuzu ,1,
integrating over any finite time interval yields finiteÛ(t;g).
Due to the periodicity ofp, we have

v~ t1t!5estv~ t !, ~13!

which, together with Eq.~10!, implies

u Î2zÛ~t;g!u50. ~14!
05620
Note thatÛ(t;g) depends onz, but not onpn(t). Thus the
z’s that are solutions to the above equation determine all
values ofsn .

The following theorem limits the applicability of ETDAS
control in cases where a UPO exhibits no torsion. Note t
the value of R does not affect the result as long asR
P(21,1).

Theorem. Consider an UPO of a dynamical system, f
which Û(t;0) has an odd number of real eigenvalues grea
than 1, with all other eigenvalues either real and less tha
or members of complex conjugate pairs. LetM̂ (t) be any
t-periodic ~or constant! matrix that enters the definition o
Û(t;g) as shown in Eq.~12!. If the eigenvalues ofÛ(t;g)
are real or come in complex conjugate pairs for allgPRe
andzP(0,1), then the UPO cannot be stabilized via ETDA
by any choice ofg.

Proof. Following Nakajima@7#, let

Gg~z![u Î2zÛ~t;g!u. ~15!

The stability of the system is determined by the roots
G0(z) for the uncontrolled system andGg(z) for the con-
trolled system. The existence of a root withuzu ,1 implies
instability. G0(z) is just the characteristic polynomial for th
inverse eigenvalues ofÛ(t;0), which by assumption has a
odd number of roots between 0 and 1. We will prove th
Gg(z) has at least one root between 0 and 1.

Let f l be the eigenvalues ofÛ(t;0). Writing Eq. ~15! for
g50 in the basis whereÛ(t;g) is diagonal, we have

G0~z!5)
l 51

N

~12zf l !. ~16!

Now from Eq. ~12!, we also haveGg(1)5G0(1), so Eq.
~16! implies

Gg~1!5)
l 51

N

~12f l ! ~17!

for all g. Since the number off l ’s that are real and greate
than unity is odd and otherf l ’s come in complex conjugate
pairs,Gg(1) must be real and negative. On the other ha
from the definition of Gg(z) we see immediately tha
Gg(0)51 for all g.

Gg(z) is continuous and has no singularities forz

P(0,1). Moreover, by assumption, the eigenvaluesÛ(t;g)
are either real or form complex conjugate pairs for allz
P(0,1), soGg(z) is real for allz P (0,1). FromGg(1),0
and Gg(0)51 it then follows thatGg(z)50, for somez
P(0,1). Q.E.D.

The following remarks address special cases of the th
rem.

Remark 1. In the case wereB(t)PRen, the quantitiesĴ(t),
M̂ (t), andg must all be real, which leads toÛ(t;g) being
real for anyzPRe ~exceptingz51/R, which lies outside the
unit circle and hence does not affect the argument!. In this
case, the condition for the theorem to apply is simply th
6-2
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Û(t;0) has an odd number of real eigenvalues greater t
1. ~This is the case addressed directly in Refs.@7# and @8#.!

Remarks 2. When bothĴ andM̂ are time independent, th
requirements of the theorem reduce toĴ having an odd num-
ber of real eigenvalues greater than zero~and all others either
real and less than zero or members of complex conjug
pairs! andĴ1r M̂ having eigenvalues that are real or come
complex conjugate pairs for anyr PRe.

Remark 3. In the case whereB̂(t) is a two component
complex vector, andĴ andM̂ are time independent, the con
ditions of the theorem are fulfilled if and only if the eige
values ofĴ are pure, real, and have opposite signs and
eigenvalues ofĴ1r M̂ , for any r P Re, are purely, real, or a
complex conjugate pair. These conditions require only t
both the trace and determinant ofĴ1r M̂ be real for allr and
that the determinant ofĴ be negative. For future reference w
note that in the special case where bothĴ and M̂ take the
form

Ĵ15F a b

b* a* G , ~18!

the theorem applies whenever@ Ĵ#,0.
In the next sections we show that certain spatially

tended systems controlled by ETDAS give rise to instab
ties of the form covered by the caseĴ1 of Remark 3.

III. THE COMPLEX GINZBURG-LANDAU EQUATION

The CGLE with the simplest form of ETDAS control is

] tA~x,t !5eA1~11 ic1!“2A2~12 ic3!uAu2A

1gmFA~x,t !2~12R!(
l 51

`

Rl 21A~x,t2 l t!G ,

~19!

whereA is a complex valued field,c1 , c3 , and e are real
constants characterizing the system@9#, and the last term on
the right hand side is the ETDAS control term withm a
complex number of unit magnitude. A family of solutions
the above equation is the traveling wave given by

Ak~x,t !5ake
i ~k•x2Vkt ! ~20!

whereak5Ae2k2 and Vk5(c11c3)k22c3e. In order for
the solution to be physically meaningful, the wave numbek
must be smaller thanAe.

We consider a spatially local and homogeneous ETD
feedback,A(x,t)2A(x,t2t), that has been shown to be e
fective for the case of one spatial dimension@6#. We will
show that in two or more dimensions, ifc1c3.1, there is no
choice ofgm that stabilizes an unstable plane wave.

We use standard techniques to analyze the stability of
plane waveAk(x,t). We writeA5(Ak1B), and expandB in
Fourier modes:
05620
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mq~ t !eiq•x. ~21!

Substituting the perturbed solution into the CGLE, linear
ing in mq , canceling a common factorAk , and equating
coefficients of exp(iq•x) in the sums, we obtain a set o
coupled first-order differential equations in which the amp
tudesmq are mixed only in 232 blocks. Lettingy denote the
vector (mq ,m2q* ), we obtain an equation of the form of Eq
~5! with

Ĵ5F2@aq21bak
2# 2bak

2

2b* ak
2 2~a* 21b* ak

2!
G12k•qF2a 0

0 a* G ,
~22!

and

M̂5Fm 0

0 m* G , ~23!

with a[11 ic1 andb[12 ic3 .
Note that bothM̂ and the first term in Eq.~22! are of the

form Ĵl , but the term in Eq.~22! proportional tok•q is not.
Thus the system describing the evolution of the comp
vector (mq ,m2q* ) is a candidate for satisfying the condition
of the theorem if and only ifk•q50.

In one dimension, we never havek•q50, so the theorem
does not apply. Indeed, it is known that spatially local E
DAS control can extend the domain of parametersc1 andc3
over which a plane wave is stable@6#. In two or more dimen-
sions, however, there always exist perturbation wave vec
for which k•q50. These must be analyzed further to det
mine whether the other conditions of the theorem are me

Let Ĵ' indicateĴ for the casek•q50. If Det@ Ĵ'#,0, the
theorem~Remark 3! will apply, meaning that there will be no
choice ofg or m that suppresses the given transverse ins
bility. Calculating the determinant from Eq.~22!, we have
Det@ Ĵ'#,0 for all q,qcr , where

qcr
2 5uaku2

2~c1c321!

11c1
2 . ~24!

Note thatqcr exists only in the regimec1c3.1. It turns out
in this case that the criterion for transverse instability and
criteria for application of the theorem are identical. All u
stable perturbation modes withk•q50 are immune to
ETDAS.

For completeness, we note that ETDAS may work in t
narrow parameter range where there exist unstable pertu
tions withk•qÞ0, butc1c3,1. Note also that in this region
although the plane wave under consideration may be
stable, there exist plane waves with smallerk that are stable
even with no control.

IV. ADDITIONAL EXAMPLES

In this section we demonstrate the existence of unsta
torsion-free perturbations to plane wave solutions of high
6-3
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order CGLE’s in two or more dimensions. Symmetry co
siderations guarantee that transverse perturbations wil
torsion-free, but a calculation is required to determ
whether there is only a single unstable eigenvalue in
relevant subspace. For a broad family of CGLE’s, unsta
transverse perturbations occur within a band of wave nu
bers 0,q2,qc

2 and ETDAS control always fails. As an ex
ample, we analyze the CGLE with a fifth-order term add
It is also shown that an•“ term, which breaks the isotrop
of the CGLE, does not help to extend the domain of contr
lable plane waves in more than two dimensions.

We consider systems of the form

] tA5eA1 (
~ i , j !P~0,0!

L,J

al j uAu2l
“

2 jA, ~25!

where al j are complex constants. We can find~for some
cases! a traveling wave solution of the form

A0~x,t !5AMei ~k•x2Vkt !. ~26!

The amplitude and frequency are determined by the eq
tions

e52(
l , j

Re@al j #~21! j k2 jM l ~27!

and

V5(
l , j

Im@al j #~21! j k2 jM l . ~28!

Writing A5Ak(11B), expandingB in Fourier modes, and
linearizing in the Fourier amplitudes, one obtains indep
dent evolution equations for the pairs (mq ,m2q* ), with

Ĵ5F (
l , j

bl j Fl ,2j~k,q! (
l , j

bl j lk
2 j

(
l , j

bl j* lk2 j (
l , j

bl j* Fl ,2j~k,2q!
G , ~29!

where

bl j [~21! jM lal j ~30!

and

Fl ,2j~k,q!5uk1qu2 j2k2 j1 lk2 j . ~31!

Note thatF2 j (k,q)5F2 j (k,2q) if and only if k•q50.
For transverse perturbations (k•q50), we have

Ĵ5 Ĵ'[Fr1s r

r* r* 1s* G , ~32!

with r[S l , jbl j lk
2 j and s[S l , jbl j @(k21q2) j2k2 j #. Note

that Ĵ' has the form ofĴ1 ~see Remark 3 above!.
05620
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The fact that the transverse perturbations lack torsion
lows from a combination of symmetry considerations. Fir
the symmetry of the CGLE with respect to spatial trans
tions, A(x,t)→A(x1D,t), together with the symmetry un
der a global phase shift,A(x,t)→exp(iu)A(x,t), guarantees
the existence of simple, plane wave solutions for sufficien
small k. The linearized equations forB ~defined as above!
retain rotational symmetries about thek axis, reflection sym-
metries through planes containing that axis, and the tran
tional symmetry of the original equations. Reflection sy
metry through the plane perpendicular tok is broken,
however, by ak•“B term. ~Note that a variation inB at
wave vectorq corresponds to a variation inA at wave vector
k1q.!

The translational symmetry governing the perturbatio
ensures that they can be resolved into sets of plane w
B5Sm(t)exp(iq•x), with couplings only between wave
with wave vectorsq and2q. For generic wave vectors, th
two coupled waves are not related by any symmetry. For
special case ofk•q50, however, the two waves in one se
tor are related by a reflection symmetry. Perturbations in
sector must either grow without translating in either theq or
2q direction and hence have no torsion, or be resolva
into eigenmodes that are complex conjugate pairs. In o

words, the form ofĴ' is a consequence of two features of t
linearized equation forB: the translational symmetry tha
permits couplings between wave vectorsq and2q only; and
the reflection symmetry that relates perturbations with th
wave vectors in the casek•q50.

The systems under consideration are autonomous,
therefore possess a time-translation symmetry that gua
tees that one of the eigenvalues in theq50 sector must be
identically zero. As shown in Ref.@8#, the limitation on ET-
DAS control still applies in such a case; i.e., if the otherq
50 mode is unstable, ETDAS will fail. If, however, th
other q50 mode is stable, then there are several poss

situations. Letl1(q2) andl2(q2) be the eigenvalues ofĴ' ,
with eitherl1.l2 or l15l2* for all q2, and consider the
casel1(0)50, l2(0),0. If l1(01).0, then ETDAS con-
trol fails for small q2 since l2(01) is less than zero by
continuity. In this case, there is a band of unstable, lo
wavelength, transverse perturbations that cannot be c
trolled by ETDAS. Ifl1(01),0, the situation is more com
plicated. In particular, it is possible for the long waveleng
modes to be stable, for the two eigenvalues to collide a
become a complex conjugate pair for stable values ofq2, and
then for their real parts to cross zero at some higherq2. In
such a case, the unstable transverse modes would no
subject to the no-control theorem and ETDAS control m
be possible. This latter scenario requires that higher-or
gradient terms be present~ajl Þ0 for somej >2! and thata01
have a negative real part. A full analysis of this unusual c
is beyond the scope of this work.

To see how the symmetry argument is reflected in
algebra of a specific case that is slightly more complica
than the cubic case treated in Sec. III consider the CG
with a quintic term:
6-4
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] tA5eA1~11 ic1!“2A2~b32 ic3!uAu2A2~12 ic5!uAu4A.
~33!

Both e and b3 can in principle take on any real value. Th
real part of the coefficient of the quintic term can be fixed
unity without loss of generality~assuming the equation mu
not have any divergent solutions!. In the notation of Eq.~25!,
we have

a01511 ic1 ,

a1052~b32 ic3!, a2052~12 ic5!,

and all otheral j 50. A traveling wave solution of the form o
Eq. ~26! must have

M5
1

2
@2b36Ab3

214~e2k2!#, ~34!

Vk5c1k22~c3M1c5M2!. ~35!

Note that the amplitudeAM must be real. LetM 1 andM 2

indicate the solutions corresponding to the different choi
of sign of the square root. Forb3.0, the M 1 solution is
relevant fork2,e, but theM 2 solution is unphysical. For
b3,0, both solutions are possible for some values ofe andk.

To see that ETDAS control cannot work, it is sufficient
consider the trace ofĴ' :

Tr@ Ĵ'#52@M 6~6Ab3
214~e2k2!!1q2#. ~36!

For all M 1 solutions, the square root is positive, so Tr@ Ĵ'# is
negative for allq. Thus it is impossible for both eigenvalue
to have a positive real part and the only way for an instabi
to arise is to have Det@ Ĵ'#,0, in which case the theorem
applies. For theM 2 solutions, the square root is negative,
the trace is positive for sufficiently smallq. In this case it is
sufficient to consider theq50 sector, where it is straightfor
ward to confirm that one of the eigenvalues ofĴ' is zero, and
therefore the other eigenvalue must be positive. Again,
number of positive real eigenvalues is odd and the theo
applies.

The symmetry argument survives even when a term p
portional ton•“A is present in the CGLE, explicitly break
ing the rotational invariance. The reflection symme
through the plane containing bothk and n still guarantees
torsion-free perturbative modes. A straightforward calcu
tion confirms this, showing the Jacobian to be of the form

Ĵn5F2@aq21bak
2# 2bak

2

2b* ak
2 2@a* q21b* ak

2#
G

12k•qF2a 0

0 a* G1n•qFn 0

0 2n* G , ~37!
05620
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wherea, b, andn are combinations of the complex coeffi
cients in the CGLE.

It is clear that the conditions of the theorem~Remark 3!
will be satisfied when the sum of the terms linear inq vanish.
This occurs for anyq}k3n. Thus, plane waves in three o
more dimensions that are unstable to transverse perturba
with wave vectors perpendicular ton cannot be stabilized
using spatially local ETDAS. In two dimensions, stabiliz
tion may be possible so long ask andn are not collinear.

V. CONCLUSIONS

For the CGLE in one dimension, Bleich and Socolar@6#
showed that the domain of stable plane waves can be
larged significantly using spatially local ETDAS. Here w
have demonstrated that in higher dimensions the sa
method does not work. The reason is an interesting one:
any parameter values such that transverse perturbation
the desired plane wave (q•k50) are unstable, the dynamic
of those with sufficiently small wave number produce
torsion in the relevant subspace of Fourier amplitudes@the
(mq ,m2q* ) subspace# and therefore cannot be suppressed.

We have analyzed only the most straightforward imp
mentation of ETDAS in the CGLE. An important feature
the feedback term we chose is that it does not generate
coupling between the 232 blocks of Fourier amplitudes tha
arise in the standard stability analysis of the CGLE. We n
that in some physical systems, the feedback may break
global phase shift symmetry of the CGLE, leading to ad
tional couplings. This occurs, for example, when the fee
back term explicitly treats the real and imaginary parts oA
differently. The effect of breaking the global phase sh
symmetry is to introduce~time-dependent! feedback cou-
plings between theq andq12nk perturbation sectors, for al
integersn. This fails to circumvent the theorem, howeve
because the uncontrolled eigenvalues corresponding to
232 block associated with2n are precisely the complex
conjugates of those associated withn, so the full Jacobian for
any finite truncation of the ladder of coupled modes still h
an odd number of torsion-free modes.

Pyragas has recently suggested a new method for stab
ing torsion-free orbits with time-delay feedback@10#. The
idea is to introduce into the system an auxiliary variable t
adds one unstable, torsion-free perturbation mode, the
changing the total number of unstable torsion-free mode
an even number. We note that application of this method
the cases studied above encounters serious difficulties.
have not examined all possible variations on this them
which might include Fourier filtering of the feedback sign
or feedback that breaks the global phase shift symmetry.
most straightforward attempts to adapt Pyragas’s schem
plane waves in the CGLE fail, however, either because t
introduce pairs of unstable eigenvalues in the relevant s
tors or they add unstable torsion-free eigenvalues to sec
that were previously controllable.

The stabilization of spatiotemporal dynamics using tim
delay feedback is of interest primarily because implemen
tion of the controller does not require the construction of a
external representation of the system. The stabilization
6-5
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plane waves against transverse perturbations appears dif
to achieve using straightforward time-delay methods. Ad
tional work is needed to determine whether such meth
can be useful in more than one spatial dimension when
desired orbit has a more complex spatial or temporal st
ture.
e

J.
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